KEY QUESTIONS/AIMS OF THE PROJECT

- How may information from specific biomarkers influence patient decision making?
- How do patients weigh the risks and benefits of specific treatment options in decision making?

PROCESS

- 2010 pilot study (focus groups, survey, data collectors, analysis, and report) based on general attributes describing benefit and side effect.
- Select specific attributes using quantitative procedures (recognition and polarization).
- Survey development; Pretest; Survey revision and revisit
- Data collection (Breast Cancer Research Program - 307 responses; Using Beyond Breast Cancer - 23 responses; Young Survivors Card 75 responses; WomACTs in 46 responses)
- Data analysis and report

RESPONSE PROFILE HIGHLIGHTS

- The respondents have high levels of education and income, most are Caucasian.
- Over 2/3 diagnosed over ten years ago.
- Almost half live within a half-hour of their treatment site.
- Over 70% indicate they are in treatment, with disease evident and stable/responding.

CONJOINT ANALYSIS

Conjoint analysis is a specialized market research technique often used to better understand the needs or values of respondents. In this case, we used patient and representative profiles to select variables to be tested, to gather patient preferences that would link to actual treatment. Respondents were not asked whether they would choose either drug by name; they saw different profiles with different treatment options.

Modeling Biomarkers

- We tested these same biomarkers in the model with both drug profiles available: capecitabine and paclitaxel. We sought information, we tested these same biomarkers in the model with both drug profiles available: capecitabine and paclitaxel. We sought to predict whether the biomarker might influence drug selection, not just whether or not to take treatment. These results are outlined below (Table 2). We see that:
- Those who live closer to their treatment site show higher likelihoods to take treatment.
- Biomarkers for benefit seem most influential than those for toxicity decision differences than biomarkers for toxicity. Biomarkers may also be useful for patients depending on the situation. That is, if only one treatment is available, we see predictions on benefit. We decide to test whether or not to take treatment.
- If no treatment is available, we see predictions on benefit. We decide to test whether or not to take treatment.

- Injury likelihood versus Toxicity Likelihood

To further examine the possible influence of biomarkers, we analyzed different subgroups of biomarkers. Some top the others. The results are outlined below (Table 3). We see:
- Benefit biomarkers have a greater influence of biomarkers, more in the selection of treatment than the "no treatment" decision.

FUTURE DIRECTIONS

- Conduct research with a more representative population of women (rural, and women with lower income/and/or educational levels).
- Continue to explore the patterns related to proximity to treatment site and to attitudes toward treatment.
- Examine preferences in the adjacent setting.
- Examine preferences draws by asking different questions to a wide range of side effects and, possibly, different types of benefits.

Somewhat limited survey findings: with respect to biomarkers, gives the high interest in the discussion of those who will, in future use and use of biomarkers. Profiling of an attitude of biomarkers would help identify those who are predisposed to treat, those who want to avoid all or particular side effects, and those who are more flexible around the choice of treatment. To identify potential patient attitudes toward treatment choices.